Davranışsal İletişim Araştırmalarında Aracılık Testine Genel Bir Bakış

Fatih ÇELİK

Öz


Davranışsal iletişim araştırmacıları, son dönemlerde değişkenler arasındaki ilişkilerin ‘neden’ ve ‘nasıl’ gerçekleştiğine dair açıklamalar sunmak amacıyla aracılık testine başvurmaktadırlar. Bu ilişkilerin ardında yatan mekanizmanın açıklanmasına imkân sunan aracılık testinin araştırmacılar tarafından kullanılması araştırma modelinin hikayesini okuyucuya aktarabilmek için kaçınılmazdır. Ancak yakın geçmişte aracılık testinin uygulanmasına yönelik metodolojik tartışmaların işaret ettiği üzere aracılık testinin felsefik arka planının yeterince anlaşılmadığı ve bu doğrultuda metodolojik düzeyde ezber uygulamaların davranışsal iletişim araştırmalarında özellikle sergilendiği dikkat çekmektedir. Bu sorunsalın önüne geçebilmek amacıyla gerçekleştirilen bu metodolojik çalışmada, aracılık testinin felsefik ve metodolojik arka planı tartışılmaya ve genel bir bakış sunulmaya çalışılmaktadır. Ayrıca, ilgili tartışmanın yeni bir metodolojik bilgi birikimi oluşturmasının yanında, mevcut durumun daha anlaşılır kılınarak sade bir şekilde araştırmacılara sunulması da bu çalışmada amaçlanmaktadır. Gelecekte davranışsal iletişim araştırmacıları aracı değişkenli modellerinin test ederken açık prosedür yaklaşımını kullanması (önyükleme gibi), dolaylı etki için bir sınıflandırma yapmaması, aracılık için hipotezlerini literatür veya teorilere göre geliştirerek bölümleme veya iletimsel yaklaşımı tercih etmesi beklenmektedir.


Anahtar Kelimeler


Aracı Değişken, Aracılık Modeli, Aracılık Testi, Aracılık Analizi, Dolaylı Etki, Davranışsal İletişim Araştırmaları.

Tam Metin:

PDF

Referanslar


Abeza, G., & Sanderson, J. (2022). Theory and social media in sport studies. International Journal of Sport Communication, 28(6), 1–9. https://doi.org/10.1123/ijsc.2022-0108).

Aguinis, H., Edwards, J. R., & Bradley, K. J. (2017). Improving our understanding of moderation and mediation in strategic management research. Organizational Research Methods, 20(4), 665-685. https://doi.org/10.1177/1094428115627498

Alfons, A., Ateş, N. Y., & Groenen, P. J. F. (2022). A robust bootstrap test for mediation analysis. Organizational Research Methods, 25(3), 591-617. https://doi.org/10.1177/1094428121999096

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173

Bozkurt, S. (2021). Pazarlama alanında en sık kullanılan Process makro modellerinin veri setleriyle incelenmesi. Ekin Yayınevi.

Bullock, H. E., Harlow, L. L., & Mulaik, S. A. (1994). Causation issues in structural equation modeling research. Structural Equation Modeling: A Multidisciplinary Journal, 1(3), 253-267. https://doi.org/10.1080/10705519409539977

Burt, I., & Hampton, C. (2017). Moderation and mediation in behavioural accounting research. İçinde T. Libby & L. Thorne (Ed.), The routledge companion to behavioural accounting research (ss. 373-387). Routledge. https://doi.org/10.4324/9781315710129-24

Chan, M., Hu, P., & K. F. Mak, M. (2022). Mediation analysis and warranted inferences in media and communication research: Examining research design in communication journals from 1996 to 2017. Journalism & Mass Communication Quarterly, 99(2), 463-486. https://doi.org/10.1177/1077699020961519

DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11(3). https://doi.org/10.1214/ss/1032280214

Dolma, S. (2021, 9 Ocak). Online eğitim “nicel veri analizlerinde aracı değişken mediator kavramı ve aracı değişkenli modeller” [Video]. YouTube. https://www.youtube.com/watch?v=_NsOYFJy4wU&t=3847s&ab_channel=NecmettinErbakan%C3%9Cniversitesi

Fang, J., Wang, X., Wen, Z., & Zhou, J. (2020). Fear of missing out and problematic social media use as mediators between emotional support from social media and phubbing behavior. Addictive Behaviors, 107, 106430. https://doi.org/10.1016/j.addbeh.2020.106430

Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233-239. https://doi.org/10.1111/j.1467-9280.2007.01882.x

Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47(1), 61-87. https://doi.org/10.1080/00273171.2012.640596

Guide, V. D. R., & Ketokivi, M. (2015). Notes from the Editors: Redefining some methodological criteria for the journal. Journal of Operations Management, 37(1), v-viii. https://doi.org/10.1016/S0272-6963(15)00056-X

Gürbüz, S. (2019). Sosyal bilimlerde aracı, düzenleyici ve durumsal etki analizleri. Seçkin Yayıncılık.

Gürbüz, S., & Bayık, M. E. (2021). Aracılık modellerinin analizinde yeni yaklaşım: Baron ve Kenny’nin yöntemi hâlâ geçerli mi? Türk Psikoloji Dergisi, 37(99), 1-14. https://doi.org/10.31828/tpd1300443320191125m000031

Hair, J. F., Black, C. W., Babin, J. B., & Anderson, E. R. (2019). Multivariate data analysis (8th edition). Cengage.

Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd Edition). SAGE Publications.

Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408-420. https://doi.org/10.1080/03637750903310360

Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd Edition). The Guilford Press.

Hayes, A. F., & Preacher, K. J. (2013). Conditional process modeling: Using structural equation modeling to examine contingent causal processes. İçinde Structural equation modeling: A second course (2nd Edition, ss. 219-266). IAP Information Age Publishing.

Hayes, A. F., & Rockwood, N. J. (2017). Regression-Based Statistical Mediation and Moderation Analysis in Clinical Research: Observations, Recommendations, and Implementation. Behaviour Research and Therapy, 98, 39-57. https://doi.org/10.1016/j.brat.2016.11.001

Holbert, R. L., & Stephenson, M. T. (2003). The importance of indirect effects in media effects research: Testing for mediation in structural equation modeling. Journal of Broadcasting & Electronic Media, 47(4), 556-572. https://doi.org/10.1207/s15506878jobem4704_5

Jose, P. E. (2013). Doing statistical mediation and moderation. The Guilford Press.

Jose, P. E. (2016). The merits of using longitudinal mediation. Educational Psychologist, 51(3-4), 331-341. https://doi.org/10.1080/00461520.2016.1207175

Jose, P. E. (2019). Mediation and moderation. İçinde G. R. Hancock, L. M. Stapleton, & R. O. Mueller (Ed.), The reviewer’s guide to quantitative methods in the social sciences (2nd Edition, ss. 248-259). Routledge. https://doi.org/10.4324/9781315755649

Katz, E., & Lazarsfeld, P. F. (1955). Personal influence: The part played by people in the flow of mass communications. Free Press.

Kenny, D. A. (2021, Mayıs 4). Mediation. https://davidakenny.net/cm/mediate.htm

Kline, R. B. (2015). The mediation myth. Basic and Applied Social Psychology, 37(4), 202-213. https://doi.org/10.1080/01973533.2015.1049349

Koschate-Fischer, N., & Schwille, E. (2018). Mediation analysis in experimental research. İçinde C. Homburg, M. Klarmann, & A. Vomberg (Ed.), Handbook of market research (ss. 1-49). Springer International Publishing. https://doi.org/10.1007/978-3-319-05542-8_34-1

Koshksaray, A. A., Franklin, D., & Heidarzadeh Hanzaee, K. (2015). The relationship between e-lifestyle and ınternet advertising avoidance. Australasian Marketing Journal, 23(1), 38-48. https://doi.org/10.1016/j.ausmj.2015.01.002

LeBreton, J. M., Wu, J., & Bing, M. N. (2009). The truth (s) on testing for mediation in the social and organizational sciences. İçinde E. C. Lance & J. R. Vandenberg (Ed.), Statistical and methodological myths and urban legends: Doctrine, verity and fable in the organizational and social sciences (ss. 107-141). Routledge.

MacKinnon, D. (2008). Introduction to statistical mediation analysis. Routledge.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83-104. https://doi.org/10.1037/1082-989X.7.1.83

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99-128. https://doi.org/10.1207/s15327906mbr3901_4

McLeod, J. M., Kosicki, G. M., & Pan, Z. (1991). On understanding and misunderstanding media effects. İçinde J. Curran & M. Gurevitch (Ed.), Mass media and society (ss. 235-266). Edward Arnold.

Memon, M. A., Cheah, J.-H., Ramayah, T., Ting, H., & Chuah, F. (2018). Mediation analysis ıssues and recommendations. Journal of Applied Structural Equation Modeling, 2(1), 1-9.

Namazi, M., & Namazi, N.-R. (2016). Conceptual analysis of moderator and mediator variables in business research. Procedia Economics and Finance, 36, 540-554. https://doi.org/10.1016/S2212-5671(16)30064-8

Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Industrial Management & Data Systems, 116(9), 1849-1864. https://doi.org/10.1108/IMDS-07-2015-0302

Pesämaa, O., Zwikael, O., Hair, J. F., & Huemann, M. (2021). Publishing quantitative papers with rigor and transparency. International Journal of Project Management, 39(3), 217-222. https://doi.org/10.1016/j.ijproman.2021.03.001

Pieters, R. (2017). Meaningful mediation analysis: Plausible causal inference and informative communication. Journal of Consumer Research, 44(3), 1-69. https://doi.org/10.1093/jcr/ucx081

Preacher, K. J., & Hayes, A. F. (2008a). Contemporary approaches to assessing mediation in communication research. İçinde A. Hayes, M. Slater, & L. Snyder, The sage sourcebook of advanced data analysis methods for communication research (ss. 13-54). Sage Publications. https://doi.org/10.4135/9781452272054.n2

Preacher, K. J., & Hayes, A. F. (2008b). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891. https://doi.org/10.3758/BRM.40.3.879

Preacher, K. J., & Selig, J. P. (2012). Advantages of monte carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77-98. https://doi.org/10.1080/19312458.2012.679848

Ramayah, T., Hwa, C., Chuah, F., Ting, H., & Memon, M. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated and practical guide to statistical analysis (2nd edition). Pearson.

Rasoolimanesh, S. M., Wang, M., Roldán, J. L., & Kunasekaran, P. (2021). Are we in right path for mediation analysis? Reviewing the literature and proposing robust guidelines. Journal of Hospitality and Tourism Management, 48, 395-405. https://doi.org/10.1016/j.jhtm.2021.07.013

Raykov, T., & Marcoulides, G. A. (2006). A first course in structural equation modeling (2nd Edition). Lawrence Erlbaum Associates.

Rijnhart, J. J. M., Lamp, S. J., Valente, M. J., MacKinnon, D. P., Twisk, J. W. R., & Heymans, M. W. (2021). Mediation analysis methods used in observational research: A scoping review and recommendations. BMC Medical Research Methodology, 21(1), 226-244. https://doi.org/10.1186/s12874-021-01426-3

Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations: Mediation analysis in social psychology. Social and Personality Psychology Compass, 5(6), 359-371. https://doi.org/10.1111/j.1751-9004.2011.00355.x

Rungtusanatham, M., Miller, J. W., & Boyer, K. K. (2014). Theorizing, testing, and concluding for mediation in scm research: Tutorial and procedural recommendations. Journal of Operations Management, 32(3), 99-113. https://doi.org/10.1016/j.jom.2014.01.002

Schoemann, A. M., Boulton, A. J., & Short, S. D. (2017). Determining power and sample size for simple and complex mediation models. Social Psychological and Personality Science, 8(4), 379-386. https://doi.org/10.1177/1948550617715068

Sim, M., Kim, S.-Y., & Suh, Y. (2022). Sample size requirements for simple and complex mediation models. Educational and Psychological Measurement, 82(1), 76-106. https://doi.org/10.1177/00131644211003261

Slater, M. D., Hayes, A. F., & Snyder, L. B. (2008). Overview. İçinde A. F. Hayes, M. D. Slater, & L. B. Snyder (Ed.), The Sage sourcebook of advanced data analysis methods for communication research (ss. 1-12). Sage Publications.

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290. https://doi.org/10.2307/270723

Soper, D. (2022, Haziran 29). Free sobel test calculator for the significance of mediation—Free statistics calculators. https://www.danielsoper.com/statcalc/calculator.aspx?id=31

Şen, S. (2020). Mplus ile yapısal eşitlik modellemesi uygulamaları. Nobel Akademik Yayıncılık.

Thoemmes, F., & Lemmer, G. (2019). Mediation analysis revisited again. Australasian Marketing Journal, 27(1), 52-56. https://doi.org/10.1016/j.ausmj.2018.10.011

Valkenburg, P. M., Peter, J., & Walther, J. B. (2016). Media effects: Theory and research. Annual Review of Psychology, 67(1), 315-338. https://doi.org/10.1146/annurev-psych-122414-033608

Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301-322. https://doi.org/10.1037/a0016972

Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197-206. https://doi.org/10.1086/651257


Refback'ler

  • Şu halde refbacks yoktur.


Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.